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MOTIVATION SPECTRA DECOMPOSITION
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Absorption spectra of BChl aggregates with B-carotene (left) or astaxanthin (right) as aggregation inducing agent. 0
Carotenid contributions are depicted as dotted lines (of corresponding colour). Carotenoid structures are shown on % 4007
top of the figures. i
200}
& [p-carotene is more effective than astaxanthin in inducing BChl c aggregation.
& Astaxanthin promotes formation of a monomer-like form of BChl ¢, presumably because 0 e s o o —— o
hydroxy and keto groups of astaxanthin compete with respective groups of BChl ¢ for Wavelength [nm]

bonding sites stabilizing BChl aggregate.
& Contribution of B-carotene to the sample absorption changes for higher concentrations,
probably due to B-carotene aggregation.

Excitation spectra (green line) and corresponding
(1-Transmittance) spectra (scaled to fit, blue line).

TRANSIENT ABSORPTION - DECAY ASSOCIATED SPECTRA

Transient absorption spectra were measured after excitation at 450nm and 490nm.
4 ' ' ' ' ' Data were fitted with a multi-exponential model. Figures to the left show comparison of
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The negative band corresponds to stimulated emission from the S2 state of carotenoids.
The positive band corresponds to photo-bleaching and stimulated emission of S1 state of
BChl c; it has a positive sign because the S1 state is receiving energy.

Theoretical analysis shows that the amplitude of carotenoid band should be proportional
to the ratio of directly excited carotenoid and BChl molecules. This is indeed true within
22% error. BChl ¢ band should consist of contribution due to energy transfer from the S2
state of BChl c (dark blue lines) and, possiby, an additional contribution due to energy
transfer from the S2 state of carotenoids. The second contribution is expected to be
proportional to the ratio of excited molecules and to the energy transfer rate constant.
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& Energy transfer occurs from the S2 state of B-carotene and
astaxanthin to the S1 state of BChl c.

& Energy transfer from B-carotene is more efficient than from
astaxanthin as manifested by both transient absorption and
fluorescence excitation spectra.

3 Etr ee0 S0 o0 Tte Boo 305 S0 es0 Eio 96055 Boo & Energy transfer efficiency is decreasing for higher concentrations
wavelength [nm] wavelength [nm] of carotenoids.
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